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Abstract. We introduce MRF-DiPh, a novel physics informed denois-
ing diffusion approach for multiparametric tissue mapping from highly
accelerated, transient-state quantitative MRI acquisitions like Magnetic
Resonance Fingerprinting (MRF). Our method is derived from a proxi-
mal splitting formulation, incorporating a pretrained denoising diffusion
model as an effective image prior to regularize the MRF inverse problem.
Further, during reconstruction it simultaneously enforces two key physi-
cal constraints: (1) k-space measurement consistency and (2) adherence
to the Bloch response model. Numerical experiments on in-vivo brain
scans data show that MRF-DiPh outperforms deep learning and com-
pressed sensing MRF baselines, providing more accurate parameter maps
while better preserving measurement fidelity and physical model consis-
tency—critical for solving reliably inverse problems in medical imaging.

Keywords: quantitative MRI - magnetic resonance fingerprinting - de-
noising diffusion models - iterative image reconstruction.

1 Introduction

Magnetic Resonance Fingerprinting (MRF) and other transient-state multipara-
metric mapping techniques [23,20, 16, 6] have demonstrated significant advan-
tages over traditional steady-state and/or single-parametric quantitative MRI,
enabling faster acquisitions for clinical use. However, additional acceleration
through the use of compressed sampling or truncated acquisition sequences,
increases image reconstruction artifacts and reduces tissue quantification accu-
racy. Early MRF reconstruction methods approached this problem with iterative
dictionary-matching [10, 2, 14], using sparsity and/or low-rank priors 25,34, 9,
15, 6], but struggled with highly undersampled data. Deep learning, particularly
convolutional neural networks (CNNs), has since demonstrated superior perfor-
mance by learning effective image priors from anatomical datasets 3,12, 13].
Recently, denoising diffusion models (DDMs) have shown remarkable success
in computational imaging [18, 30, 29, 27]. In reconstruction, DDMs can use data-
driven conditioning to transform artifact-contaminated images into high-quality
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restored outputs [11]. Recent works [19, 8,35, 22] integrate physical acquisition
priors, such as enforcing MRI k-space consistency between diffusion steps [21, 17,
28], to improve generalization and reliability. Despite promising results in single-
parametric gMRI [4, 31] and MRF [24], current MRF diffusion-based approaches
do not explicitly enforce consistency with the physical acquisition model or scan-
ner measurements, which are critical factors affecting reliability.

Contribution: To address these limitations, we propose MRF-DiPh, a physics-
informed diffusion-based MRF reconstruction algorithm. MRF-DiPh uses a pre-
trained denoising diffusion model as a spatial image prior to regularize recon-
struction, and enforces two essential physical constraints: (1) consistency with
k-space measurements and (2) compliance with the Bloch signal-response model.
Experiments on retrospectively shortened in vivo brain scans show that MRF-
DiPh outperforms existing deep learning and compressed sensing methods, yield-
ing more accurate parameter maps with stronger adherence to physical con-
straints and scanner measurements.

2 Preliminaries

2.1 The MRF Problem: MRF reconstruction is a nonlinear inverse problem:
y ~ A(x) such that x, = p,BLocH(T1,,T2,), Vv : voxels (1)

Quantitative T1 and T2 tissue property maps (qmaps) have to be estimated for
hxw voxels. x € C**"*% is the time-series of magnetization images (TSMI) that
has to be reconstructed. BLOCH(+) denotes the nonlinear Bloch response model
that voxel-wise encodes gqmaps into the time-signals (fingerprints) within the
TSMI, scaled by the proton density p. A is the linear forward acquisition oper-
ator that relates TSMI to the undersampled k-space measurements y € C*™x!
from m spatial frequency locations across c receiver coil channels, and [ time
frames. A encompasses coil sensitivities, a nonuniform FFT, and a linear di-
mensionality reduction [26,2,15] which is commonly used for computationally
efficient reconstructions by compressing the time dimension of TSMI into ade-
quately smaller s < [ time frames. Additionally, the reconstructions employ an
MRF dictionary as a discretized approximation of the BLOCH model, containing
a lookup table, LUT, of d finely sampled T1-T2 values and their precomputed
Bloch responses D € C%4** [26]. The Euclidean projections of a TSMI x onto the
Bloch constraints in (1) can then be approximated by dictionary matching [10]:

Xproj ~ p*D(T1*,T2%) where, (T1*,T2",p") < DICT-MATCH(X) (2)

and DICT-MATCH(x) = arg min, (71 12)eruT [|[X —pD(T1,T2)||2, based on voxel-
wise dictionary search using exact or approximate algorithms (see [7, 14]).

2.2 Diffusion Models: DDMs generate images from complex distributions
p(x0) by iteratively refining Gaussian noise samples xr ~ N(0,Id) over ¢t =
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1,...,T diffusion steps [18,30,29,27]. The forward diffusion process corrupts
clean images X into noisy counterparts x; through:

x¢ = Vauxo + /1 — aze where, e ~N(0,1d), t=1,...,T (3)

where {a;} € (0, 1) decreases as t increases and defines a steadily lowering signal-
to-noise ratio SNR := 1/0? = a;/(1 — &), until x; approximates pure noise.
Training a DDM involves learning a noise estimation network €y, minimising
the loss Ex, 1. [||e — €p(x¢, t)||%] Once trained, ey is used iteratively in a reverse
diffusion process to approximate samples from p(xg) [29]:

Xi—1 = V@—1Xot + /1 — @1 — n?eg(xe, t) + ne (4)

where X ; := \/% (xt — V1 — ageg(xy, t)) estimates xo by denoising x¢, €p(x¢, t)
and € ~ N(0,Id) are the predicted (deterministic) and stochastic noise terms
reintroduced to the sample at appropriate scales, and ) € [0, /1T — &;_1| controls
the stochasticity of sampling. For inverse problems, reconstruction guidance can
be provided by incorporating conditional information into training and sampling
e.g, a low-quality reconstruction x. = Ay from undersampled measurements y
using the adjoint operator. The network is thus parametrized as €y (x¢, ¢, X.) to re-
fine denoising adapted to x., approximating samples from distribution p(xg|X.).

3 MRF-DiPh Algorithm

We formulate MRF reconstruction as:

arg i f(00) + Ah(x) 5)
where f(x) = |ly —Ax||% enforces k-space consistency, h(x) regularizes solutions

with an image prior, and the regularization parameter A > 0 balances the two
terms. The constraint set B := {x s.t. + = pD(T'1,72)} ensures Bloch model
consistency via an MRF dictionary (section 2.1). Using Half Quadratic Splitting
(HQS), we can solve (5) iteratively for t =T, T —1,...,1:

Xy = prozyz,(Xe) = argrr;in h(x) + T"Q”X - f(tH%, (6)
~ . 12 ~
oy = argmin £(x) + 4lx - %3, )

where 02 := \/p and p > 0 controls convergence. This process decouples image
prior enforcement (proximal step (6)) from physical acquisition constraints (7).
To incorporate deep learning-based image priors, one could adopt a plug-and-
play framework [33,1] and replace (6) with a deep denoising model pretrained
on images to remove additive Gaussian noise of variance 0? = 1/SNR. Inspired
by this idea, we extend HQS with a DDM-based prior:
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- 1 =
XO,t = \/7027 (Xt — ]. — ateg(xt,t)) s (8)
0,0 = argmin £(x) + 5llx — o3, (9)

Xi—1 = /a—1%04 + /1 — Q1 (\/1 —&é + \/ge) (10)

where & = ’“717\/‘/5;2“ and € ~ N(0,I). Eq (8) performs denoising via DDM’s
pretrained noise estimator eg, yielding Xg ¢, an estimate of the clean image xg
(section 2.2). Eq. (9) further enforces k-space and Bloch consistency, producing
Xo,¢. Finally, (10) reintroduces noise to the current cleaned image estimate to
obtain a diffusion sample x;_; for the next step. The added noise combines a
stochastic € and a deterministic term &, balanced by £ € [0, 1], e.g. £ = 0 gives a
fully deterministic sampling.* As discussed in section 2.2, ¢ estimates noise at
various SNR levels 1/0?, which increases as sampling progresses, i.e. t decreases.
Consequently, p; := \/o? also increases as t decreases.

The constrained subproblem (9) can be solved using the ADMM algorithm [5],
which introduces an auxiliary variable z;, the dual variable (Lagrange multipli-
ers) v¢, and a convergence hyperparameter v; > 0. Early experiments showed
a single ADMM iteration is sufficient for updating (9). This single-step ADMM
update can be written as follows:

%o, = argmin /() + 5 [x = %ol + G lx -zt vi/ulE (1)
71 = argmin |z — (Xo,0 +vi/7)]3, (12)
Vie1 = Vi + % (Xo,e — Zp—1). (13)

. HieXo,t+VtZ— Vi
where (11), equivalent to prox__g (7m+%

term enforcing k-space consistency, which can be efficiently updated by a few
conjugate gradient (CG) iterations. Eq (12) is a projection onto the Bloch con-
straints set, approximable via DICT-MATCH(Xo 4+ v¢/7:) (see (2)) to give Bloch-
consistent TSMI z;_; and also, the qmaps q;—1 = (T1¢-1,T2;-1,p,_1). Fi-
nally, (13) updates the ADMM’s dual variable v;_;. The ADMM parameter is
set as ¢ := T, where 7 > 0 balances k-space and Bloch consistency constraints.
Combining (8)-(13), we obtain MRF-DiPh (Algorithm 1). To accelerate recon-
struction, we follow [29] and use a sub-sequence {t;}X | C[1,...,T] of K < T
time steps, skipping intermediate steps during diffusion sampling.

), is a linear least squares

4 The deterministic noise is predicted from the current noisy sample x; and the physics-
consistent estimate Xo,, which differs slightly from the deterministic noise used
in (4); replacing Xo,+ with X0+ from (8) would recover é = €g(x¢,t) similar as (4).
Instead, we update é; using physics-consistent %o from (9).
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Algorithm 1 MRF-DiPh
Reqlﬁre: f7 €0, {tk}lev{&tk}§:17A7T7 €

1: Set 07 := (1 — &) /Gty pi i= N O}, Y 1= Th
2: Initialize xx ~ N (0,Id), zx = vk =0
3:fork=K,...,1do

4: X0,k = ﬁ (xk — 1 - dke(g(xk,tk,xc)) denoised image
- Ro.k+VhZk —Vi . .
5: X0,k = Proxr_1 (M) k-space consistent image
’ PrRETs KTk =

6: (Zk_1, qk_l) — DICT—MATCH()ACO,k Jrvk/’yk) Bloch-consistent image & qmaps
7: Vie1 = Vi + (X0t — zt,l) dual variable update

. P 1 > odicte sterministic) ise
8: € = ﬁ(xk — \/akzk,l) predicted (deterministic) noise
9: e~ N(0,1) stochastic noise

10: Xp—1 = +/Ok_1Zk—1++/1 — ak,l(\/EH— V1 —£€€) //noisy sample for next iter

11: end for; return X;ec = 20, Qrec = qo := {T'1o, T1o, py}

3.1 Implementation Details

The source code for our implementation is publicly available at https://github.
com/p-mayo/mrf-diph. Our approach was developed in PyTorch using the guided
diffusion toolbox®, following the UNet architecture from [11] at half precision.
The UNet consisted of six levels, each with two residual blocks, using channel
sizes [128, 128, 256, 256, 512, 512] from highest to lowest feature resolutions,
and three attention heads at feature resolutions 28 x 28, 14 x 14 and 7 x 7.
Our base model employed a conditional DDM trained on paired TSMIs
{x. = Ay, x¢ = Xt} Low-aliasing reference TSMIs x,cf were generated from
k-space measurements y,of acquired through extended MRF scans [20]. To sim-
ulate faster acquisitions, y,.f was subsampled by truncation along the time di-
mension, producing k-space data y, from which highly artifact-contaminated
condition images x. were obtained. Both x. and x,.f were time-compressed with
s = 5 [26]. Complex-valued data were processed by concatenating the real and
imaginary parts along the channel dimension, and images were range-normalized
to [-1,1]. Our framework also supports an unconditional DDM, trained solely on
{x0 = Xyet}, without data-driven conditioning/guidance. We explored this ap-
proach in Section 4. Training used T' = 1000 diffusion steps, a; = HZ;O(I — Bt)
with linearly spaced B; (8o = 0.0001, Sr = 0.02), for 100k iterations, using
ADAM optimizer with learning rate 10, batch size 32, and data augmentation
with random vertical /horizontal spatial flips. For inference, our base model used
experimentally tuned parameters K = 30, A = 10~%,7 = 0.01,¢ = 1, CG maxi-
mum iterations 5 and initialized by the previous update of line 5 in Algorithm 1.

4 Numerical Experiments

Setup: The dataset consists of anonymized 2D brain MRF scans from healthy
adult volunteers, obtained with informed consent in compliance with the Ger-

5 https://github.com/openai/guided-diffusion
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man Act on Medical Devices, and acquired using the Steady State Precession
(FISP) sequence and flip angles from [20] for [ = 1000 time frames, repeti-
tion/echo/inversion times of 10/1.908/18 ms, non-Cartesian k-space sampling
with variable density spiral readouts, image size 230 x 230, lmm in-plane res-
olution and 5mm slice thickness. Scans were performed on the same 3T GE
MR750w scanner with 8-channel receive-only RF head coils. Models were trained
and tested for the reconstruction of R = 5 fold accelerated scans by retrospec-
tive truncation of the FISP sequence length to | = 200. The dataset includes 8
subjects with 15 axial slices each, split 75%-25% over mutually exclusive sub-
jects —6 for training, 2 held-out for testing— ensuring no data leakage. Reference
gqmaps were reconstructed using LRTV [15] from full-length (I = 1000) scans,
from which the reference TSMIs were estimated using BLOCH model in (1). An
MRF dictionary containing d = 95k atoms, was simulated from EPG [32] and
used in methods that required quantitative mapping. Except the SCQ baseline,
other methods used a time-domain linear dimentionality reduction with s = 5
from [26]. Reconstruction performance was evaluated using Mean Average Per-
centage Error (MAPE) for skull-stripped qmaps, channel-averaged Normalized
Root Mean Squared Error (NRMSE) for TSMI, and NRMSE between k-space
measurements (y) and predictions (yyec := AXyec), Where applicable. Experi-
ments ran on an NVIDIA GeForce RTX 4090 GPU.

Baseline methods: Our method was evaluated against SVDMRF [26], MRF-
ADMM [2], LRTV [15], SCQ [12] and MRF-IDDPM [24]. SVDMRF uses
Xree = Afy to reconstruct the TSMIs (equivalent to the conditions x. in
our approach) which are then passed to DICT-MATCH for quantitative mapping.
MRF-ADMM uses the ADMM algorithm to enforce k-space consistency and
Bloch constraints (DICT-MATCH) during reconstruction. Here we did not employ
additional regularisation. LRTV employs k-space consistency and a Total Varia-
tion image regularization using convex optimisation. SCQ is a CNN-based deep
learning method that maps aliasing-contaminated TSMIs from undersampled
acquisitions to restored T1/T2 maps. It uses a fully-connected network to re-
duce the TSMI dimension, then employs two UNets to estimate T1 and T2 maps
separately. We implemented SCQ following [12] for architecture, and trained the
models for 1k epochs using data augmentation (patching, vertical/horizontal
flips), ADAM optimizer, MSE loss, and a learning rate of 0.005—parameters that
pefermed best for our data. MRF-IDDPM is a conditional DDM model that
does not employ physics-driven guidance during sampling. We assess its sam-
pling performance using the same network €y trained for MRF-DiPh.

Ablations: The parameters A and 7 were tuned to reach a satisfactory bal-
ance between image prior and physics guidance. We found A = 1074, and
~ € [0.01,0.1] provided competitive performance. To assess the effect of &, we
tested two MRF-DiPh sampling configurations, one used an even mix of deter-
ministic and stochastic noise (£ = 0.5, Mode A), whereas a second used purely
deterministic noise (£ = 0, Mode B), and found no significant impact (Table 1).
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Table 1. Reconstruction metrics (averaged over the test dataset) for TSMI, T1 and
T2 maps, as well as the k-space fitting errors for different methods.

MAPE (%) | NRMSE (%) |
Method T1 T2 TSMI __ K-Space
SVDMRF 20.01  144.27 57.10 99.93
MRF-ADMM 20.30  68.51 30.90 18.69
LRTV 19.84  39.01 37.95 11.72
sSCQ 8.76 22.61 - -
MRF-IDDPM 8.45 22.54 27.26 36.06
MRF-DiPh (base) | 6.75 18.40 18.65 22.82
MRF-DiPh (A) 6.80 18.41 18.70 22.52
MRF-DiPh (B) 7.15 18.63 18.64 22.40
MRF-DiPh (C) 7.17 18.82 18.79 22.12
MRF-DiPh (D) 11.32  29.78 25.36 19.17

Two additional modes were evaluated: Mode C, which combined DDM sampling
with k-space consistency but without dictionary matching, and Mode D, which
employed an unconditional DDM denoiser trained separately without condition-
ing images x., while keeping other training parameters the same as our base
model. To improve sampling speed, we inspected the maximum number of CG
iterations in prox s, and the number sampling steps K. Results of these investi-
gations are in Tables 1 and 2.

5 Results

MRF-DiPh outperforms the tested baselines across all reconstruction metrics
(Table 1), improving T1 MAPE by ~2%, T2 MAPE by ~ 4.2%, and TSMI
NRMSE by ~ 8.6%. Figure 1 compares the reconstructed T1 and T2 maps.
While most baselines perform well on T1, T2 estimation is notably harder in
short MRF sequences. At 5x acceleration, differences are more evident in T2
maps (Figure 1, Table 1). Zoom-ins show MRF-IDDPM underestimating T2
in white matter, SCQ lacking clear/sharp tissue boundaries on T2 for deep
brain tissue regions, and other baselines failing on T2- consistent with trends
in Table 1. Table 1 shows that MRF-DiPh outperforms the purely data-driven
MRF-IDDPM not only in quantitative mapping, but also in k-space fidelity by
~ 13% less errors, leveraging physics-informed guidance during reconstruction.
Enforcing only k-space consistency along with DDM (ablated case C) improved
performance over MRF-IDDPM, while adding Bloch consistency (MRF-DiPh
base) further enhanced gmap reconstructions. A trade-off exists with k-space
consistency—weak or absent image priors can lead to overfitting, introducing ar-
tifacts from noisy undersampled data (see LRTV, ADMM-MRF).

In our experiments, the unconditional model (MRF-DiPh D) improved upon
SVDMRF, ADMM-MRF and LRTV methods. However, it underestimated T2
maps, particularly around grey matter and CSF areas (Fig. 1), falling short
of conditional /supervised learning baselines. The embedded conditioning in our
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MREF-DIPH
SVDMRF MRF-ADMM (UNCONDITIONAL) MRF-IDDPM MRF-DiPh REFERENCE

T1(s)

Error (%) _

T2(5)

Eror (%) .

Fig. 1. Reconstructed T1-T2 maps and their zoomed-in absolute percentage error maps
(rows), using different methods (columns) for a representative brain slice in test set
(electronic zoom recommended).

Table 2. MRF-DiPh reconstruction time vs. accuracy for the options: number of sam-
pling steps (K), and maximum CG iterations. Results for the test image in Fig 1.

MRF-DiPh Base K cG

5 10 20 50 1 10 20
Runtime (s) 44.17 8.83 15.88 30.03 72.29 | 30.02 61.03 91.79
TSMI NRMSE 15.76 | 16.74 14.99 15.55 16.06 | 15.73 15.87 15.70
(T1+T2)/2 MAPE 10.42 | 14.20 11.93 10.62 10.22 | 10.37 10.45 10.33

Table 3. Average reconstruction errors (MAPE T1 + MAPE T2)/2 over the test set
throughout training iterations for MRF-DiPh and baseline MRF-IDDPM.

Checkpoint x103| 10 20 30 40 50 60 70 8 90 100
MRF-DiPh 145.81 23.70 14.41 13.30 12.87 12.62 12.48 12.44 12.57 12.58
MRF-IDDPM  [340.51 347.01 405.90 404.77 225.16 128.07 60.53 25.22 19.06 15.50

base model was able to resolve this challenging task. Therefore, exploring the
application of unconditional MRF-DiPh in other acceleration schemes — such
as further k-space subsampling, rather than truncating the sequence length —
requires further investigation.

The runtimes MRF-DiPh base model reconstructions took ~ 44 seconds,
slightly longer but comparable to the iterative baselines LRTV and ADMM-
MREF. The three major steps, DDM denoising, k-space consistency (prozs) and
DICT-MATCH took approximately 7%, 53% and 40% of the total runtime. Re-
construction time can be decreased by reducing the number of CG iterations
in proxzy (e.g. to 1), or lower sampling steps K (e.g. to 20), allowing a con-
trolled trade-off with accuracy (see Table 2). Exploring faster /approximate DICT-
MATCH alternatives [7, 14] could further enhance efficiency. Our model took 55.5
hours to complete 100k training iterations. However, analysis of the performance
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checkpoints reveals that MRF-DiPh, utilizing physics-based guidance, achieves
competitive test accuracy early in training—significantly faster than the purely
data~-driven MRF-IDDPM model. This advantage could have significant impli-
cations for 3D /high-dimensional imaging tasks, where training becomes highly
resource-intensive.

6 Conclusions

This work introduced MRF-DiPh, a diffusion-based model for reconstructing
MRF data with more accurate tissue parameter estimations and improved mea-
surement fidelity. The proposed method intertwines the sampling steps of the
diffusion model with measurement and Bloch consistency regularizations. Our
experiments demonstrate MRI-DiPh’s potential with robust reconstructions that
incorporate physics-driven guidance. Extending this work to 3D MRF imaging,
pathological /disease cases, or anatomical regions beyond the brain remains an
important direction for future research.

Acknowledgments. This work was supported by the EPSRC grant EP/X001091/1.
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