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Synopsis 
Motivation: Fast quantitative MRI using highly accelerated acquisitions like in MRF comes at 
the cost of severe aliasing artifacts that needs to be resolved. 

Goal:  Addressing undersampling artifacts and quantifying uncertainties in quantitative maps to 
pave the way to even shorter acquisitions e.g. in MRF. 

Approach: Introducing the first probabilistic diffusion-based framework for the example of MRF 
reconstruction, advancing state-of-the-art-deep learning techniques for more accurate 
quantitative mapping with tools to assess uncertainties. 

Results: Quantitative and qualitative evaluations show that our diffusion-based approach 
outperforms state-of-the-art in producing more accurate tissue parameters. Uncertainty maps 
exhibit correlations between areas of large variance with areas of large errors. 

Impact  
Our proposed approach enables the efficient use of Improved Denoising Diffusion Probabilistic 
Models for reconstructing highly accelerated quantitative MRI acquisitions, such as Magnetic 
Resonance Fingerprinting, leading to more accurate tissue parameter estimations. 

 

Introduction 
Compressed sampling strategies significantly reduce MRI scan times, and in quantitative MRI, 
such as Magnetic Resonance Fingerprinting (MRF)1, enable fast multiparametric mapping. 
However, this comes at the cost of strong aliasing artifacts that need to be addressed through 
image reconstruction techniques. State-of-the-art algorithms are deep learning-based2,3,4,5,6, 
focusing either on the reconstruction of MRF image timeseries data6 or directly the quantitative 
maps2. Recently, denoising diffusion probabilistic models (DDPM)7,8 have been introduced to 
medical imaging applications9,10,11, however, their potential for MRF problem remains 
unexplored. The high dimensionality of MRF data, combined with limited dataset sizes, presents 
significant challenges, as DDPMs are both computationally intensive and data-hungry. Our work 
aims to address them. We introduce a novel efficient patch-based DDPM approach for 
quantitative MRI and demonstrate it for the example of MRF reconstruction. We show that our 
method, MRF-IDDPM, outperforms current baselines and has great potential for further 
shortening of MRF acquisitions without loss of parameter encoding information. Findings are 
validated on in-vivo brain MRF scans. 

 



Methods 
To estimate the quantitative maps 𝒒 = {T1, T2, Proton Density (PD)}, we reconstruct 𝒙 the 
timeseries of magnetization images (TSMI) from the undersampled MRF k-space data 𝒚: 

𝒚 ≈ 𝐴(𝒙), s. t.   𝒙𝑝 = PD𝑝 ∙ 𝐵(T1𝑝, T2𝑝),   ∀𝑝: 𝑝𝑖𝑥𝑒𝑙𝑠              (eq1)  

Here 𝐴 is the linear acquisition operator, comprising nonuniform-FFT, coil sensitives and SVD 
reduction9. 𝐵 is the pixel-wise nonlinear Bloch response. To reconstruct 𝒙, we propose a 
conditional DDPM pipeline. Given a dataset of clean (reference) and degraded (condition) TSMI 
images (𝒙0, 𝒙𝑐) a network 𝜖𝜃(𝒙𝑡 , 𝑡, 𝒙𝑐) is trained to capture coarse-to-fine image details in 𝒙0 by 
estimating Gaussian noise added in latent variables 𝒙𝑡  during the forward diffusion process: 

𝒙𝑡 = √�̅�𝑡𝒙0 + √1 − �̅�𝑡𝝐;  𝛼𝑡 = 1 − 𝛽𝑡;  �̅�𝑡 = ∏ 𝛼𝑗
𝑡
𝑗=0 ;  𝝐~𝒩(𝟎, 𝑰𝒅)  

Where 𝛽𝑡 defines a noise schedule over t=1,…,T diffusion steps. Guided by the gridding 
reconstructions 𝒙𝑐 = 𝐴𝐻𝒚 containing severe aliasing artifacts, the network learns to separate 

noise from image content, optimizing the loss 𝔼𝑥0,𝑡,𝜖 [||𝜖 − 𝜖𝜃(𝒙𝑡 , 𝑡, 𝒙𝑐)||
2

2
]. 

During inference, the reverse process approximates a sample from the conditional distribution 
𝑞(𝒙0|𝒙𝑐) by iteratively denoising: 

𝒙𝑡−1 =
1

√𝛼𝑡

(𝒙𝑡 −
1 − 𝛼𝑡

√1 − �̅�𝑡

𝜖𝜃(𝒙𝑡, 𝑡, 𝒙𝑐)) + 𝜎𝑡𝒛,   𝑡 = 𝑇, 𝑇 − 1, … , 1; 𝒙𝑇 , 𝒛~𝒩(𝟎, 𝑰𝒅) 

We used an IDDPM8 strategy for training and inference, enabling  �̂�0 ≈ 𝒙0 in far fewer K<<T steps 
by also learning variances 𝜎𝑡 = 𝜎𝜃(𝒙𝑡 , 𝑡, 𝒙𝑐). Our network is trained on randomly-cropped TSMI 

patches  {𝒙𝑐
(𝑖)

= 𝐶𝑟𝑜𝑝(𝒙𝑐), 𝒙0
(𝑖)

= 𝐶𝑟𝑜𝑝(𝒙0)} of size 64x64. 𝒙𝑡
(𝑖) are also treated as patches. This 

allows for faster training without compromising inference speed nor accuracy while also 
providing more variability in the training dataset. Our architecture is a UNet adopted from 
IDDPM8, trained with T=1000, linear noise schedule (𝛽0 = 0.0001, 𝛽𝑇 = 0.02). Inference 
(reconstruction) used K=50 interpolated steps8. 

We evaluated our approach on 2D healthy brain FISP-MRF data, acquired using the variable flip 
angle schedule12 and TR/TE/TI of 10/1.908/18ms, l=1000 repetitions, variable density spiral 
sampling, matrix size of 230x230 with 1mm in-plane resolution and 5mm slice thickness. We 
compare our approach against SVDMRF13, LRTV14, a DRUNet15 network trained for TSMI 
reconstruction, and SCQ2 trained for direct parameter map estimation (SCQ does not produce 
TSMIs). To reconstruct q, dictionary matching1 is used on the output of all methods except SCQ. 
Methods are evaluated on retrospectively truncated scans with acceleration factor 5 (l=200). 
Our dataset consists of 8 subjects, 15 axial slices each. We use 6 subjects for training and 2 for 
evaluation. The reference parameter maps were reconstructed using LRTV14 from full-length 
FISP acquisitions. TSMI references were estimated from the reference parameter maps 
following the Bloch response model (eq1). Reconstruction metrics are reported in Table1. 
Figure1 shows the estimated T1/T2 parameter maps, Figure2 the reconstructed TSMIs, and 
Figure3 the uncertainty maps for T1/T2 parameter maps. 

 

 



Results 
Table1 shows that MRF-IDDPM outperforms baselines across all metrics, with an improvement 
of ~1.7% and ~3.5% in MAPE of T1 and T2, respectively. Qualitative assessment of Figure1 and 
Figure2 further support the improved performance on reconstructed T1/T2 maps and the TSMIs. 
The power of MRF-IDDPM becomes more evident in Figure2, where our approach is capable of 
reconstructing the last (i.e. weakest) two TSMI subspace components (Table1 also shows ~15% 
less TSMI NRMSE using MRF-IDDPM). We hypothesize such performance can be attributed to 
the attention modules in our architecture and DDPM’s iterative refinement, which allows for 
progressive restoration of details and more precise recovery compared to CNNs’ single-pass. 
Most importantly, it is demonstrated that despite the shortened TSMI and the thereby reduced 
encoding of the relaxometry processes, T1 and T2 parameter information are better restored. 
Figure3 presents the reconstruction uncertainty maps generated by IDDPM-MRF, showing a 
clear correlation with the reconstruction error maps. 

Conclusions 
We introduced a novel IDDPM-based model for reconstruction of parameter maps from further 
accelerated MRF data. Qualitative and quantitative results demonstrated IDDPM-MRF 
outperforms established algorithms for MRF reconstruction with respect to parameter accuracy 
and image quality. The proposed patch-wise approach enables more efficient training and 
inference pipeline. 
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Table 1 Reconstruction metrics for TSMIs (where applicable) and tissue parameter maps (T1/T2) for the evaluated 
algorithms. The evaluation dataset consisted of 24 axial brain slices from two different subjects. MRF-IDDPM 
reconstructions correspond to the average of ten realizations, each one from a different xT. Best reconstruction 
metrics are highlighted in bold. 

 

 

Figure 1. Reconstructed T1(left), T2(right) maps by our IDDPM method and baselines along with percentage error 
maps for three representative brain slices from the evaluation set. For our method, dictionary matching is used on the 
TSMIs computed from the pixel-wise average of 10 TSMI realizations of IDDPM.  

 



 

Figure 2. Magnitudes of the reference and reconstructed TSMIs (SVD compressed to 5 components from l=200) from 
a representative slice in the evaluation dataset, using different methods. IDDPM-MRF (also DRUnet) uses the gridding 
reconstruction from SVDMRF as the input, generating restored TSMI outputs. Compare to baselines MRF-IDDPM 
notably improves the reconstruction of TSMI subspace components, especially in last/weakest SVD  channels. 

 



 

Figure 3 Uncertainty maps for T1 (left) T2 (right) reconstructions of three representative brain slices (rows) in 
evaluation set. Maps were obtained by ten runs of IDDPM-MRF with dictionary matching using the same condition xc 
for different random xT,. Each subfigure shows the pixel-wise average (left), standard deviation (middle) and absolute 
error (right) between average and reference from Fig1. Higher uncertainties—correlated with greater errors—are 
mainly observed in tissues with longer relaxation times e.g. cerebrospinal fluid, while less so in white and grey matter 
areas. 

 


